
ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ «СНЭМА-СЕРВИС»

МОДУЛЬ РАСШИРЕНИЯ ДИСКРЕТНЫХ ВХОДОВ BRIC-DI-16

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ СНС 1.001.005 РЭ

Содержание

1	Наименование	3
2	Предприятие-изготовитель	3
3	Назначение	3
4	Технические характеристики	3
5	Внешний вид	4
6	Вид под корпусом	5
7	Конфигурация	6
8	Комплектность	6
9	Специальные режимы работы 9.1 Запуск самодиагностики каналов ввода-вывода 9.2 Сброс параметров к заводским настройкам 9.3 Получение нового адреса устройства по CAN-шине	7 7 7 7
10	Дискретные входы 10.1 Подключение датчиков и внутреннее устройство каналов DI	8 9 9 10 11
11	Межмодульное соединение	11
12	Меры безопасности	11
13	Монтаж	12
14	Обновление ПО	12
15	Техническое обслуживание и ремонт 15.1 Плановое обслуживание модуля	13 13 14 14 15 16
16	Маркировка	16
17	Упаковка	17
18	Ресурсы, сроки службы и хранения, гарантии изготовителя	17
19	Транспортирование	17
20	Утилизация	17
21	Адресное пространство DI (BRIC_SOFI)	18

1 Наименование

Модуль расширения дискретных входов BRIC-DI-16

2 Предприятие-изготовитель

OOO «СНЭМА-СЕРВИС», 450022, Республика Башкортостан, г.Уфа, ул. 50-летия Октября д.24 тел. 8(347)2284316, www.snemaservis.ru

3 Назначение

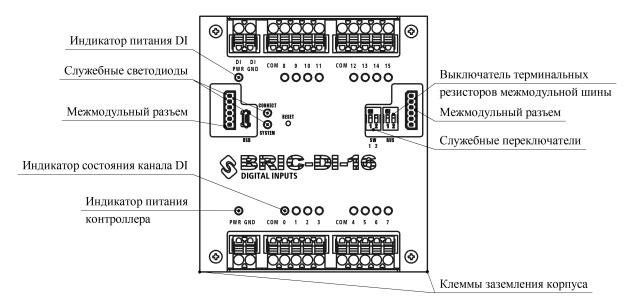
Модуль расширения дискретных входов BRIC-DI-16 (далее по тексту – модуль) соответствует ТУ 27.33.13.161-001-00354407-2018 и предназначен для построения локальных и территориально-распределенных систем автоматики технологических объектов малого и среднего уровня сложности в составе комплекса BRIC.

Модуль отвечает жестким условиям промышленной эксплуатации и устанавливается непосредственно на технологическом объекте. Модуль предназначен для использования в непрерывном, круглосуточном режиме.

4 Технические характеристики

ОБЩИЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ

Параметр	Значение
Габариты ВхШхГ, мм	не более 111 x 100 x 50
Масса, кг	не более 1
Рабочая температура, °С	-40+80
Атмосферное давление, кПа	84107
Относительная влажность воздуха, без конденсации	2095
влаги %, при температуре 25°C	
Тип крепления	на DIN-рейку
Степень защиты	IP20
Время сохранения заданных параметров без подключе-	3 года
ния питания (батарейный домен)	
Напряжение питания от сети постоянного тока, В	1030
Потребляемая мощность, Вт	не более 10
Количество устройств на одной шине, шт.	до 128
Возможность питания по межмодульной шине	до 8 устройств


ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ДИСКРЕТНЫХ ВХОДОВ (DI)

Параметр	Значение
Количество дискретных входов	16
Тип дискретных входов	сухой контакт/пост. напряжение (зави-
	сит от конфигурации)
Режим подсчета импульсов	до 10 кГц (до 4 каналов)
Режим измерения частоты	1 мкГц100 Гц, 100 Гц10 кГц (до 4
	каналов)
Пределы допускаемой относительной погрешности измерения	±0,01
частоты, %	
Абсолютная погрешность счета входных импульсов	±1 импульс на 10 000 импульсов
Гальваническая изоляция, В	групповая, 1000
Самодиагностика дискретных входов	да

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ИНТЕРФЕЙСОВ

Параметр	Значение
Межмодульные интерфейсы связи	CAN + RS-485
Скорость передачи данных по двум независимым каналам в	до 1 и 2
межмодульной шине, Мбит/с	

5 Внешний вид

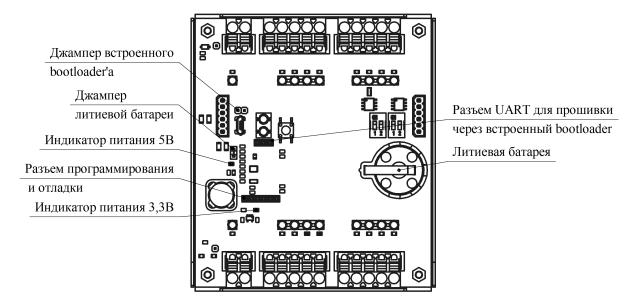
Модуль BRIC-DI-16 выполнен в металлическом корпусе, состоящем из двух частей. Для крепления на DINрейку на задней стенке корпуса имеется клипса.

Разъемные клеммы для подключения проводов расположены с верхней и нижней сторон модуля и обеспечивают удобную коммутацию:

- PWR, GND питание модуля 10 30 В;
- DI PWR, DI GND внешний источник питания дискретных выходов 15 30 В (если встроенный источник питания отсутствует);
- DI_0...DI_15 дискретные входы;
- СОМ общий контакт для группы каналов.

В нижних углах расположены клеммы заземления корпуса. Подключение можно осуществить с любой из сторон.

Каждый канал имеет индикаторный светодиод зеленого цвета.


С левой и правой сторон находятся межмодульные разъемы для подключения к контроллеру и дополнительных модулей расширения. Подключение терминальных резисторов межмодульных интерфейсов связи осуществляется соответствующими переключателями «BUS».

Так же на лицевой панели находятся два служебных двухцветных светодиода SYSTEM и CONNECT, кнопка перезагрузки и два служебных переключателя SW1-1, SW1-2.

Для доступа к печатной плате модуля необходимо открутить 4 винта М3 по углам корпуса.

Предупреждение: РАЗБОРКА МОДУЛЯ ДОПУСТИМА ТОЛЬКО ПРИ ОТКЛЮЧЕННОМ ПИТАНИИ

6 Вид под корпусом

На верхней стороне печатной платы расположены:

- Литиевая батарейка типоразмера CR2025 для питания RTC и сохранения заданных настроек;
- Джампер литиевой батареи;
- Разъем для программирования и отладки модуля;
- Светодиодные индикаторы питающих напряжений;
- Разъем UART для прошивки модуля через встроенный bootloader;
- Джампер для активации встроенного bootloader'a (для активации bootloader'a необходимо установить данный джампер и нажать кнопку «reset», по окончании прошивки необходимо снять джампер и снова нажать кнопку «reset»);

Также на верхней стороне платы расположены контрольные точки для диагностики работоспособности модуля. Более подробное описание контрольных точек для диагностики смотри в разделе *Техническое обслу*живание и ремонт (страница 13).

7 Конфигурация

Конфигурация модуля задается шифром вида:

1	-	2	-	3.1	3.2
BRIC-DI-16	-	V	-	0	1

Позиция	Описание
1	Название модуля
2	Тип разъемных клемм
	А - Клеммы винтовые разъемные
	V - Клеммы push-in разъемные вертикальное расположение
	H - Клеммы push-in разъемные горизонтальное расположение
3	Цифровые входы (DI)
3.1	Вход СОМ / Вход DI
	0 - COM = GND / сухой контакт, открытый коллектор
	1 - COM = DIPWR / сухой контакт
	2 - COM = GND / пост. напряжение
3.2	Источник питания DI
	0 - Внешний (с гальванической изоляцией)
	1 - Встроенный (с гальванической изоляцией)

Примечание: ПРИМЕР: BRIC-DI-16-V-01

Модуль с вертикально расположенными клеммами; $DI_COM = DI_GND$, тип входного сигнала - сухой контакт; источник питания DI встроенный.

8 Комплектность

Наименование	Обозначение	Количество
Модуль расширения дискретных входов BRIC-DI-	CHC 1.001.005	1
16		
Паспорт	CHC 1.001.005 ПС	1
Руководство по эксплуатации* ⁰	CHC 1.001.005 PЭ	
Соединитель межмодульный 50мм	CHC 2.001.001	1

 $^{^{0}}$ Поставляется на партию изделий

9 Специальные режимы работы

Для управления специальными режимами работы модуля на лицевой панели предусмотрен двухклавишный переключатель SW.

Таблица 1: Специальные режимы работы модуля

SW-	SW-	Режимы работы
1	2	
ON	ON	Запуск самодиагностики каналов ввода-вывода
ON	OFF	Сброс параметров модуля к заводским настройкам
OFF	ON	Получение нового адреса устройства по межмодульной CAN-шине
OFF	OFF	Нормальный режим работы

9.1 Запуск самодиагностики каналов ввода-вывода

Внимание: САМОДИАГНОСТИКА КАНАЛОВ ВВОДА-ВЫВОДА ПРОВОДИТСЯ ТОЛЬКО ПРИ ОТ-КЛЮЧЕННЫХ ЛИНИЯХ ТЕСТИРУЕМЫХ КАНАЛОВ

Для самодиагностики каналов ввода-вывода необходимо отсоединить разъемы. Далее на работающем модуле в нормальном режиме работы перевести состояние переключателей в SW-1 > ON, SW-2 > ON и нажать кнопку RESET. После перезагрузки начнется тестирование каналов.

Сначала последовательно загорятся и погаснут все индикаторные светодиоды тестируемого блока — на этом этапе визуально можно обнаружить неисправные светодиоды. Далее начнется диагностика каналов тестируемого блока — на этом этапе индикаторные светодиоды могут хаотично или синхронно мигать. По завершении тестирования индикаторные светодиоды рабочих каналов загорятся.

Через 2 секунды после завершения тестирования последнего блока все индикаторные светодиоды погаснут. После этого необходимо вернуть модуль в нормальный режим работы SW-1 > OFF, SW-2 > OFF.

9.2 Сброс параметров к заводским настройкам

Для сброса к заводским настройкам необходимо на работающем модуле в нормальном режиме работы перевести состояние переключателей в SW-1 > ON, SW-2 > OFF и нажать кнопку RESET. После перезагрузки необходимо вернуть модуль в нормальный режим работы SW-1 > OFF, SW-2 > OFF.

9.3 Получение нового адреса устройства по САN-шине

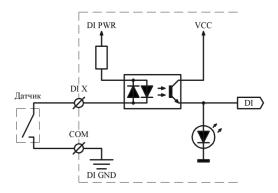
При первом подключении модуля расширения ему необходимо присвоить адрес устройства в соответствии с исполняемым пользовательским ПО на master-контроллере. Для этого необходимо подключить модуль по межмодульной шине к master-контроллеру и запитать. Далее в нормальном режиме работы необходимо перевести состояние переключателей в SW-1 > OFF, SW-2 > ON и нажать кнопку RESET. Единовременно на межмодульной CAN-шине может быть только одно устройство в режиме получения нового адреса.

После успешного получения нового адреса светодиод CONNECT загорится оранжевым цветом, что будет свидетельствовать о наличии обмена по CAN-интерфейсу. Возможно, понадобится перезагрузить главный контроллер. Для корректного обмена терминальный резистор межмодульной шины должен быть подключен либо только на главном контроллере, либо на устройствах расположенных по краям межмодульной шины.

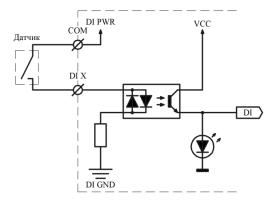
После успешного присвоения нового адреса необходимо вернуть модуль в нормальный режим работы SW-1 > OFF, SW-2 > OFF.

10 Дискретные входы

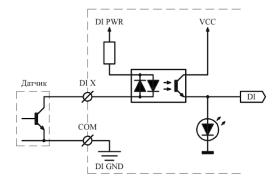
Дискретные входы модуля DI предназначены для подключения датчиков типа «сухой контакт», «открытый коллектор», «постоянное напряжение». В любой конфигурации обеспечивается гальваническая изоляция каналов DI от внутренней схемы модуля.


Любой канал DI может работать в режиме счетчика и/или частотомера и настраивается индивидуально.

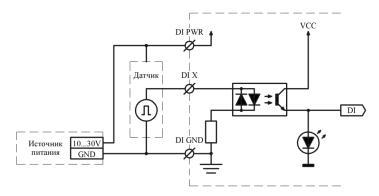
В модуле имеется схема самодиагностики, позволяющая провести тестирование каналов в режиме счета, частотомера и отображения логического состояния при любой конфигурации.


10.1 Подключение датчиков и внутреннее устройство каналов DI

Подключение датчика типа «сухой контакт»:


конфигурация 3.1 = 0 (COM = GND):

конфигурация 3.1 = 1 (COM = DI PWR):



Подключение датчика типа «открытый коллектор», конфигурация 3.1 = 0 (COM = GND):

Подключение датчиков типа «сухой контакт» и «открытый коллектор» возможно как при встроенном, так и внешнем источнике питания. Напряжение питания встроенного источника 24~B. Диапазон напряжений питания от внешнего источника 10-30~B.

Подключение датчика типа «постоянное напряжение», конфигурация 3.1 = 2 (COM = GND), 3.2 = 0 (внешний источник питания DI):

Подключение датчиков типа «постоянное напряжение» возможно только при использовании внешнего источника питания 10 – 30 В. Уровни напряжений:

- лог. 0 0...7 B;
- лог. 1 20...30 В.

10.2 Работа в режиме счетчика и частотомера

Любой канал DI может работать в режиме счетчика и/или частотомера. Максимальная частота следования импульсов 10 кГц, минимальная длительность импульса 10 мкс.

Предупреждение: Не рекомендуется подавать сигналы с частотой выше 100 Гц более чем на 4 канала DI одновременно.

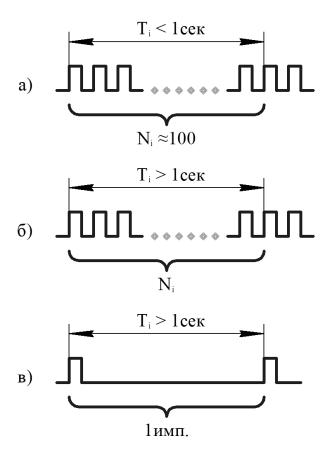
10.3 Настройка и работа с каналами DI

Параметр	Значе-	Диапазон	Описание
	ние по		
	умолча-		
	нию		
DI_noise_filter_us_x	10	10 - 65 000	Длительность импульса (1 ед. = 10 мкс). Им-
			пульсы, длительность которых меньше чем
			значение DI_noise_filter_us не будут обраба-
			тываться.
DI_pulseless_time_x	10000	1 000 - 1 000 000 000	Время в мс. Если в течение данного времени
			не было ни одного импульса, значение часто-
			ты обнуляется
DI_mode_x	3	1, 2, 3	Режим работы канала: 1 - подсчет импульсов,
			2 - измерение частоты, 3 - подсчет импульсов
			и измерение частоты
DI_state	-	065535	Логическое состояние каналов. Каждый бит
			содержит состояние отдельного канала: 0 -
			нет сигнала, 1 - есть сигнал
DI_cnt_x	-	02^{64}	Счетчик входных импульсов
DI_freq_x	-	0.010000.0	Измерение частоты

10.4 Описание алгоритма работы DI

• Режим отображения логического состояния

В режиме отображения логического состояния каналы DI опрашиваются с фиксированной частотой, и результаты записываются в соответствующий регистр.


• Режим подсчета импульсов

В режиме подсчета импульсов каналы DI работают в режиме прерываний. По переднему фронту импульса запускается миллисекундный таймер, измеряющий длительность импульса. Далее если значение таймера больше параметра Noise Filter, значение счетчика соответствующего канала инкрементируется.

• Режим частотомера

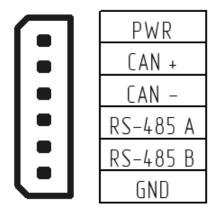
В режиме частотомера каналы DI так же работают в режиме прерываний. По переднему фронту импульса запускается миллисекундный таймер, измеряющий длительность импульса. Далее если значение таймера больше параметра Noise Filter, значение счетчика соответствующего канала инкрементируется. Одновременно с таймером длительности импульса запускается второй таймер, измеряющий период следования импульсов (время между передними фронтами соседних импульсов). Далее вычисляется период измерения частоты, в течение которого наберется 100 импульсов. Если период измерения частоты получился больше 1 секунды (частота менее 100 Гц), то период измерения устанавливается равным 1 секунде. По окончании периода измерения пара значений – длительность периода и количество импульсов за этот период помещаются в буфер выборки. Значение частоты для сигналов с частотой более 100 Гц рассчитывается по методу скользящего среднего с использованием 5 выборок. Значение частоты для сигналов с частотой от 1 до 100 Гц рассчитывается по 1 выборке, причем для вычисления используется время между первым и последним импульсом. Значение частоты для сигналов с частотой менее 1 Гц рассчитывается по 1 выборке, содержащей 1 импульс и время между соседними импульсами.

Алгоритм расчета частоты для разных частот a) $f > 100 \Gamma \mu$, б) $f < 100 \Gamma \mu$, в) $f < 1 \Gamma \mu$:

Так как период измерения рассчитывается с каждым новым импульсом, происходит автоматическая подстройка периода измерения и обновления значения частоты. Если в течение времени Pulseless time не было

ни одного импульса, значение измеренной частоты обнуляется.

10.5 Поверка каналов DI

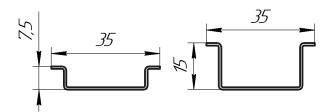

Поверка дискретных входов производится метрологической службой предприятия согласно НА.ГНМЦ.0530-20 МП, «Инструкция. ГСИ. Контроллеры программируемые логические серии «BRIC». Методика поверки» Межповерочный интервал - 1 год.

11 Межмодульное соединение

Межмодульная шина предназначена для подключения модулей расширения в пределах одного монтажного шкафа. Возможно питание по межмодульной шине нескольких устройств (максимальный ток до 5 A). Межмодульная шина не обеспечивает гальванической изоляции.

Межмодульное соединение осуществляется с помощью шлейфа длиной 50 мм, поставляемого в комплекте. Шлейф большей длины заказывается отдельно.

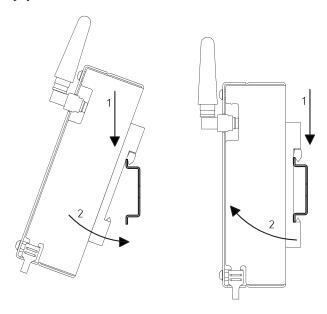
Со стороны неподключенного шлейфа согласующие резисторы (терминаторы) межмодульных интерфейсов должны быть подключены соответствующими переключателями.


Клеммы PWR и GND на межмодульном разъеме и одноименные клеммы питания модуля соединены напрямую.

12 Меры безопасности

- 1. Все работы по монтажу, наладке и техническому обслуживанию модулей должны выполняться специалистами, изучившими техническую документацию, конструкцию, особенности модуля, а также действующие строительные правила и нормы, и имеющими соответствующую квалификационную группу по технике безопасности.
- 2. Модуль сконструирован и изготовлен таким образом, что в нормальных условиях и при эксплуатации согласно документации изготовителя, при возникновении неисправностей он не представлял опасности для обслуживающего персонала.
- 3. При проведении самодиагностики необходимо отключать все клеммы, кроме питания и интерфейсов связи.
- 4. Модули соответствуют требованиям:
- ГОСТ 12.2.007.0 «Система стандартов безопасности труда. Изделия электротехнические. Общие требования безопасности» класс защиты III;
- ТР ТС 020/2011 «Электромагнитная совместимость технических средств».

13 Монтаж


Модуль устанавливается на DIN-рейку типа ТН-35, профиль которой изображен на рисунке:

Монтаж модуля на DIN-рейку осуществляется с помощью клипсы, расположенной на задней стенке корпуса.

Для установки модуля необходимо сначала надавить на верхний подпружиненный выступ клипсы, после чего защелкнуть нижний выступ.

Для снятия модуля необходимо сначала надавить на верхний подпружиненный выступ клипсы, после чего потянуть нижнюю часть корпуса на себя.

Примечание: Для заземления корпуса в нижних углах корпуса расположены контакты.

14 Обновление ПО

1. Установка защитного ключа-перемычки (Boot_key):

Для снятия ограничений на изменение ПО и калибровочных коэффициентов необходимо установить ключ-перемычку, расположенную с обратной стороны платы модуля. Для доступа к перемычке необходимо разобрать модуль согласно разделу *Техническое обслуживание и ремонт* (страница 13).

Далее подать питание на модуль и подключиться к нему по интерфейсу USB.

После завершения обновления ПО необходимо убрать перемычку во избежание непреднамеренного изменения ПО.

Примечание: При подключении через интерфейс USB IP-адрес по умолчанию: 172.16.2.232

2. Загрузка новой версии ПО:

Для обновления ПО зайдите на главную WEB-страницу модуля. Нажмите на кнопку «Enter Password» и введите пароль (пароль по умолчанию «bric»). Далее нажмите на кнопку «Download OS» и выберите запрашиваемый файл. После нажатия кнопки «Download» дождитесь окончания загрузки и нажмите кнопку «Start». Переход на главную страницу произойдет автоматически через 10 секунд.

15 Техническое обслуживание и ремонт

Предупреждение: Все работы по наладке и техническому обслуживанию модулей должны выполняться специалистами, изучившими техническую документацию, конструкцию, особенности модуля, а также действующие строительные правила и нормы, и имеющими соответствующую квалификационную группу по технике безопасности.

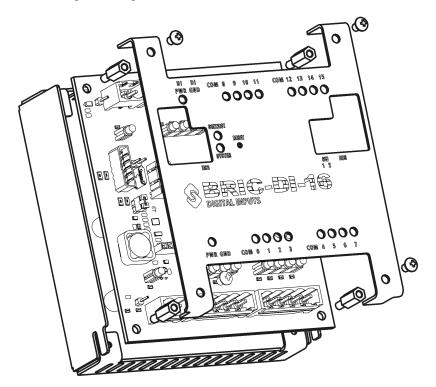
15.1 Плановое обслуживание модуля

Вид работ	Содержание работ	Периодичность
Внешний	Проверка работы светодиодных индикаторов, проверка це-	Еженедельно или чаще (в
осмотр	лостности пломб, проверка надежности крепления прово-	зависимости от наличия
	дов в разъемах	персонала на объекте)
Удаление	Протирка от пыли поверхностей модуля, удаление пыли из	Раз в год
пыли и	внутренностей модуля через вентиляционные отверстия в	
грязи	корпусе с помощью пылесоса	
Самодиа-	Отсоединить клеммы от модуля и провести самодиагности-	Раз в год
гностика	ку (подробнее смотри раздел Специальные режимы рабо-	
каналов	ты (страница 7))	
ввода-		
вывода		

15.2 Периодическая проверка параметров модуля

В процессе эксплуатации рекомендуется периодически (раз в месяц) открывать WEB-интерфейс модуля и отслеживать критически важные параметры:

Параметр (регистр)	Описание
module_number	Номер модуля на межмодульной шине - должен соответствовать
	пользовательской программе
reset_num	Количество перезапусков модуля - не должно увеличиваться, если не
	было перебоев питания или ручных перезапусков
time_hms	Внутреннее время модуля
internal_temp	Температура микропроцессора - не должна превышать 125°C
v_pwr Напряжение питания модуля - должно соответствовать проектно	
	кументации
v_bat	Напряжение элемента питания - при снижении ниже 2.0 В необходи-
	мо заменить элемент питания
total_tasks_time	Загруженность центрального процессора - не должна превышать 95%


15.3 Порядок разборки модуля

Предупреждение: Разборку модуля следует производить только при отключенном питании.

Схема разборки представлена ниже.

- 1. Открутить 4 винта отверткой РН;
- 2. Снять лицевую крышку;
- 3. Открутить 4 стойки торцевой головкой №5,5;
- 4. Снять печатную плату модуля.

Сборка осуществляется в обратном порядке.

15.4 Визуальный осмотр

Внутри модуля не должно быть посторонних предметов, грязи, насекомых. На печатной плате не должно быть потемнений, следов перегрева, остатков флюса, следов коррозии и видимых повреждений. Допускается наличие легких разводов нефраса как результата отмывки печатных плат при производстве или после ремонта.

Серийный номер на этикетке печатной платы должен совпадать с серийным номером на этикетке корпуса.

Электролитические конденсаторы на обратной стороне платы не должны быть деформированы (вздутие верхней части).

15.5 Проверка цепей питания

При проверке электрических параметров рекомендуется установить печатную плату в корпус и закрепить стойками для удобства работы.

Запитать модуль постоянным напряжением 10...30 В. Если конфигурация модуля предполагает использование внешнего источника питания для блока DI, необходимо запитать и его (DI_PWR, DI_GND). Допускается в рамках проверки запитать все от одного источника питания. Все индикаторы питания должны загореться.

Мультиметром измерить напряжения в контрольных точках платы. Расположение контрольных точек показано на рисунке ниже.

Так как в модуле реализована гальваническая изоляция, контрольные точки необходимо измерять относительно «собственной» гальванически изолированной «земли». Допустимый уровень значений приведен в таблице.

Расположение контрольных точек (для платы версии V0):

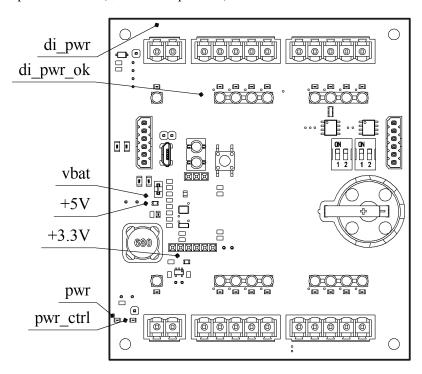


Таблица 2: Значения напряжений в контрольных точках

Контрольная	Отно-	Допустимые значения
точка	ситель-	
	но чего	
	изме-	
	рять	
pwr	GND	1030 В (должно соответствовать напряжению питания)
pwr_ctrl	GND	13 B (pwr/10)
+5V	GND	4,955,05 B
+3.3V	GND	3,253,35 B
vbat	GND	1,83,6 B
di_pwr_ok	GND	3,03,3 B
di_pwr	DI_GND	1030 В (при использовании внешнего источника питания должно соот-
		ветствовать напряжению питания блока DI), \ 2426 В (при использова-
		нии встроенного источника питания)

15.6 Наиболее частые поломки и неисправности

Список наиболее частых поломок и неисправностей приведен в таблице.

Неисправность	Возможная причина	Решение
Модуль не включается, свето-	Перепутана полярность питания на	Поменять местами провода на
диоды не горят, источник пи-	клеммах модуля	клеммах PWR и GND
тания уходит в защиту		
Модуль не включается, све-	Короткое замыкание в цепи +3.3 V	Найти и заменить элемент,
тятся светодиоды «PWR» и		вышедший из строя
«+5 V»		
Модуль не включается, све-	Короткое замыкание одного из встро-	Заменить вышедший из строя
тится светодиод «PWR»	енных источников гальванически изо-	источник гальванически изо-
	лированного питания блока DI	лированного питания
	Короткое замыкание в цепи +5 V	Найти и заменить элемент,
		вышедший из строя
Модуль возвращается к завод-	Не установлен джампер VBAT	Установить джампер VBAT
ским настройкам после сброса	Переключатели в режиме сброса к за-	Перевести модуль в нормаль-
питания	водским настройкам	ный режим работы
	Напряжение батареи (vbat) ниже 1,8 В	Заменить литиевую батарею
Модуль подключен к контрол-	Не включены терминальные резисторы	Включить терминальные ре-
леру, но обмен отсутствует		зисторы межмодульной шины
	На модуле установлен неправильный	Получить новый адрес
	адрес по межмодульной шине	

16 Маркировка

При изготовлении на боковую сторону корпуса модуля наклеивается этикетка, содержащая следующие сведения:

- наименование модуля;
- конфигурация модуля;
- наименование предприятия-изготовителя;
- напряжение питания;
- рабочая температура;
- класс степени защиты;
- технические условия;
- версия;
- серийный номер изделия;
- знак соответствия обязательной сертификации.

17 Упаковка

- 1. Модуль упаковывается в тару из гофрированного картона.
- 2. Упаковка модуля должна соответствовать требованиям ГОСТ 23170, ГОСТ 23216 и обеспечивать совместно с консервацией сохранность изделия при транспортировании и хранении.
- 3. Документация, входящая в комплект поставки помещается в полиэтиленовый пакет.
- 4. Модуль совместно с документацией упаковывается в транспортную тару.
- 5. На транспортной таре должны быть нанесены манипуляционные знаки в соответствии с требованиями ГОСТ 14192: «ВЕРХ», «ОСТОРОЖНО. ХРУПКОЕ», «БЕРЕЧЬ ОТ ВЛАГИ».

18 Ресурсы, сроки службы и хранения, гарантии изготовителя

- 1. Изготовитель гарантирует соответствие модуля требованиям ТУ 27.33.13.161-001-00354407-2018.
- 2. Время наработки на отказ не менее 75 000 часов.
- 3. Средний срок службы 10 лет.
- 4. Межповерочный интервал 1 год.
- 5. Гарантийный срок эксплуатации 12 месяцев со дня отгрузки.
- 6. Гарантийный срок хранения 6 месяцев с момента изготовления.
- 7. Гарантийный ремонт проводит предприятие изготовитель ООО «СНЭМА-СЕРВИС».
- 8. В случаях выхода из строя модуля в послегарантийный период ремонт может производиться предприятием-изготовителем по отдельному договору за счет пользователя.

19 Транспортирование

- 1. Модуль допускается транспортировать любым видом транспорта при условии защиты от прямого воздействия атмосферных осадков и пыли.
- 2. Условия транспортирования модулей в части воздействия механических факторов С по ГОСТ 23216.
- 3. Модули должны храниться в законсервированном виде или в оригинальной упаковке изготовителя в сухих отапливаемых складских помещениях.
- 4. Срок хранения не должен превышать 6 месяцев.

20 Утилизация

- 1. Модуль и материалы, используемые при изготовлении, не представляют опасности для жизни, здоровья людей и окружающей среды, как в процессе эксплуатации, так и после окончания срока эксплуатации и подлежат утилизации.
- 2. Конструкция модуля не содержит химически и радиационно-опасных компонентов.
- 3. По истечении срока службы модуль утилизируется путем разборки.
- 4. При утилизации отходов материалов, а также при обустройстве приточно-вытяжной вентиляции рабочих помещений должны соблюдаться требования по охране природы согласно ГОСТ 17.1.1.01, ГОСТ 17.1.3.13, ГОСТ 17.2.3.02 и ГОСТ 17.2.1.04.
- 5. Утилизация отходов материалов согласно СанПиН 2.1.7.1322.

21 Адресное пространство DI (BRIC_SOFI)

index	name	type	size	byte address	mdb address	flags	description
0	mdb_addr	U16	1	0	0	SELFI SAVED	modbus address
1	device_type	U8	1	2	1	SELFIROI SAVED	type of device
2	board_ver	U8	1	3	1	SELF RO SAVED	board version
3	module_number	U16	1	4	2	SELFI SAVED	module ao number 0 - 127
4	num_of_vars	U16	1	6	3	SELF	num_of_vars
5	ip	U8	4	8	4	SELFI SAVED	ip address
6	netmask	U8	4	12	6	SELFI SAVED	netmask address
7	gateaway	U8	4	16	8	SELFI SAVED	gateaway address
8	usb_local_ip	U8	4	20	10	SELFI SAVED	ip address for local usb net
9	mdb_revers	U8	1	24	12	SELFI SAVED	reverse 3 and 4 function
10	mdb_shift	U8	1	25	12	SELFI SAVED	shift start address regs from 0 to 1
11	reset_num	U16	1	26	13	SELFIROI SAVED	number of system resets
12	last_reset	U16	1	28	14	SELF ROI SAVED	reason of last system reset
13	sys_tick_counter	U64	1	30	15	SELFI RO	tick in ms
14	tick100us	U64	1	38	19	SELFI RO	tick counter in 100us time
15	time_hms	U8	10	46	23	SELF	struct for real time
16	unix_time_sec	S32	1	56	28	SELF	unix_time_sec
17	os_version	U8	4	60	30	SELFI RO	os_version
18	mac_addr	U8	6	64	32	SELFI RO	mac address
19	uniq_id	U8	12	70	35	SELFI RO	uniq_id number
20	internal_temp	FLOAT	1	82	41	SELFI RO	temperature internal sense value
21	v_pwr	FLOAT	1	86	43	SELFI RO	PWR voltage
22	v_bat	FLOAT	1	90	45	SELFI RO	3V battery voltage
23	cur_free_heap	U32	1	94	47	SELFI RO	cur_free_heap
24	min_free_heap	U32	1	98	49	SELFI RO	min_free_heap
25	di_test_result	U32	1	102	51	SELFI RO	di test result
26	sofi_test_result	U32	1	106	53	SELFI RO	sofi_test blocks results
27	sofi_test_blocks	U32	1	110	55	SELF	sofi test blocks
28	run_test	U32	1	114	57	SELFI RO	running tests
29	state	U32	1	118	59	SELFI RO	current module state
30	command	U16	1	122	61	SELF	command register

continues on next page

Таблица 3 - продолжение с предыдущей страницы

	T	Таблица 3 - продолжение с предыдущей страницы								
index	name	type	size	byte address	mdb address	flags	description			
31	debug_info	U8	8	124	62	SELF	reserved use for debug			
32	uart1_sets	U16	1	132	66	SELFI SAVED	settings immodule uart			
33	uart3_sets	U16	1	134	67	SELFI SAVED	settings DEBUG UART			
34	channels_timeout	U32	6	136	68	SELFI SAVED	time outs for channel use for retranslations			
35	di_noise_fltr_us	U16	16	160	80	SELFI SAVED	digital inputs noise filter in us (x10)			
36	di_pulseless_ms	U32	16	192	96	SELFI SAVED	digital inputs pulseless time in ms			
37	di_mode	U16	16	256	128	SELFI SAVED	digital inputs mode			
38	di_state	U32	1	288	144	SELFI ROI SAVED	digital inputs state			
39	di_cnt	U64	16	292	146	SELFI SAVED	digital inputs cnt values			
40	di_freq	FLOAT	16	420	210	SELF RO SAVED	digital inputs frequency values			
41	flags_task	U32	1	484	242	SELFI RO	check for task created			
42	counter_task	U64	4	488	244	SELFI RO	struct counter tasks			
43	flags_init_passed	U32	1	520	260	SELFI RO	inited modules			
44	flags_succ_init	U32	1	524	262	SELFI RO	success inited modules			
45	isol_pwr_state	U16	1	528	264	SELFI RO	isolated power state			
46	ai_internal	U16	4	530	265	SELFI RO	adc internal service channels			
47	rs_485_immo_sen	dsU32	1	538	269	SELF	RS-485_1 send			
48	rs_485_immo_erro	orsU32	1	542	271	SELF	RS-485_1 errors			
49	pass_key	U32	1	546	273	SELFIROI SAVED	key for registers change			
50	monitor_period	U32	1	550	275	SELFI RO	sofi_monitor period in ms			
51	total tasks time	FLOAT	1	554	277	SELFI RO	total_tasks_time			
52	task	U8	28	558	279	SELFI RO	task0			
53	task	U8	28	586	293	SELFI RO	task1			
54	task	U8	28	614	307	SELFI RO	task2			
55	task	U8	28	642	321	SELFI RO	task3			
56	task	U8	28	670	335	SELFI RO	task4			
57	task	U8	28	698	349	SELFI RO	task5			
58	task	U8	28	726	363	SELFI RO	task6			
59	task	U8	28	754	377	SELFI RO	task7			
60	task	U8	28	782	391	SELFI RO	task8			
61	task	U8	28	810	405	SELFI RO	task9			
62	task	U8	28	838	419	SELFI RO	task10			

continues on next page

Таблица 3 - продолжение с предыдущей страницы

index	name	type	size	byte address	дыдущей стр mdb address	flags	description
63	task	U8	28	866	433	SELFI RO	task11
64	task	U8	28	894	433	SELFI RO	task11
65	task	U8	28	922	461	SELFI RO	task12
66		U8	28	950	475	SELFI RO	
67	task	U8		930	489		task14
	task		28			SELFI RO	task15
68	task	U8	28	1006	503	SELFI RO	task16
69	task	U8	28	1034	517	SELFI RO	task17
70	task	U8	28	1062	531	SELFI RO	task18
71	task	U8	28	1090	545	SELFI RO	task19
72	task	U8	28	1118	559	SELFI RO	task20
73	task	U8	28	1146	573	SELFI RO	task21
74	task	U8	28	1174	587	SELFI RO	task22
75	task	U8	28	1202	601	SELFI RO	task23
76	task	U8	28	1230	615	SELFI RO	task24
77	task	U8	28	1258	629	SELFI RO	task25
78	task	U8	28	1286	643	SELFI RO	task26
79	task	U8	28	1314	657	SELFI RO	task27
80	task	U8	28	1342	671	SELFI RO	task28
81	task	U8	28	1370	685	SELFI RO	task29
82	task	U8	28	1398	699	SELFI RO	task30
83	task	U8	28	1426	713	SELFI RO	task31
84	link	U16	1	1454	727	SELF RO	link
85	eth_arp	U16	1	1456	728	SELF RO	eth_arp
86	ip_frag	U16	1	1458	729	SELFI RO	ip_frag
87	ip_proto	U16	1	1460	730	SELFI RO	ip_proto
88	icmp	U16	1	1462	731	SELFI RO	icmp
89	udp	U16	1	1464	732	SELFI RO	udp
90	tcp	U16	1	1466	733	SELFI RO	tcp
91	mem_heap	U16	1	1468	734	SELFI RO	mem_heap
92	memp_udp_pool	U16	1	1470	735	SELFI RO	memp_udp_pool
93	memp_tcp_pool	U16	1	1472	736	SELFI RO	memp_tcp_pool
94	memp_listen_tcp	U16	1	1474	737	SELFI RO	memp_listen_tcp
95	memp_seg_tcp	U16	1	1476	738	SELFI RO	memp_seg_tcp
96	memp_altcp	U16	1	1478	739	SELFI RO	memp_altcp
97	memp_reassdata	U16	1	1480	740	SELFI RO	memp_reassdata
98	memp_frag_pbuf	U16	1	1482	741	SELFI RO	memp_frag_pbuf
99	memp_net_buf	U16	1	1484	742	SELFI RO	memp_net_buf
100	memp_net_conn	U16	1	1486	743	SELFI RO	memp_net_conn
101	memp_tcpip_api	U16	1	1488	744	SELFI RO	memp_tcpip_api
102	memp_tcpip_input		1	1490	745	SELFI RO	memp_tcpip_input
103	memp_sys_timeout		1	1492	746	SELFI RO	memp_sys_timeou
103	memp_pbuf_ref	U16	1	1494	747	SELFI RO	memp_pbuf_ref
105	memp_pbuf_pool	U16	1	1496	748	SELFI RO	memp_pbuf_pool
105	lwip_sys	U16	1	1498	749	SELFI RO	lwip_sys
100	iwip_sys	010	1	1770	177	SELFIKO	IMIP_sys